G -S PRODUCTS COLLECSTAR MODEL \# CSD9120A

SPECIFICATIONS FOR 20 CUBIC YARD AUTOMATED, GRAVITY UNLOAD

SCOPE

This specification describes a truck mounted, hydraulic refuse packer. Machine must be equipped with an automated loading mechanism on the curb side of the material receiving hopper near the front of the body. Body must be designed so that optimum load distribution can be achieved when installed on a 33,000 G.V.W. truck cab and chassis. Body installation shall not require modification to a standard truck chassis forward of the rear suspension. (NO DROP FRAME) THIS BODY MUST BE GRAVITY DUMP UNLOAD.
I. BODY
A. CAPACITY

1. The body shall have a usable capacity of twenty (20) cubic yards including the tailgate.

B. DIMENSIONS

1. Body length -228 " - (including bustle tailgate).
2. Overall height above chassis -94 " - (lift mechanism in "down" position).
3. Overall height above chassis -MUST NOT EXCEED 110" - (lift mechanism in full "up" position with 90-100 gallon cart in grabbers).
4. Overall width 96 "- with arm in parked position.

1. CONSTRUCTION

1. The body floor shall be constructed of $1 / 4$." HARDOX 450 steel plate.
2. The body floor shall have $6 " \times 10.5 \mathrm{lbs} . / \mathrm{ft}$. structural channel long members.
3. Body sides shall be curved shell style, twelve (12) gauge ,50,000 P.S.I. steel sheet.
4. Body roof shall be curved shell style, twelve (12) gauge 50,000 P.S.I. steel sheet.
5. All external welds shall be continuous.

II. TAILGATE

A. CAPACITY

1. The tailgate shall have a usable capacity of 4.8 cubic yards minimum.
B. CONSTRUCTION
2. Body tailgate shall be bustle type, top hinged, with heavy-duty hinges and tapered-pin plunger style locks. Lock pins must have grease fittings accessible from ground level outside the body.
3. Tailgate shall be equipped with a flow control device to assure smooth, even operation.
4. Tailgate to be constructed from 12 gauge steel sheet and framed with formed steel channel.
5. Gate shall have a seal across the bottom and at least 20 " up each side to control liquid leakage.

C. OPERATION

1. For greater operational stability and safety the tailgate shall be raised and lowered with two $21 / 2^{\prime \prime}$ bore $\times 28$ " stroke double acting hydraulic cylinders.
2. All tailgate controls shall be located inside the truck cab within easy reach of the operator's position. I.E. tailgate operation shall not require exit of the cab by the driver. Controls shall be electric/air/hydraulic and spring returned to the "neutral" position.
3. Tailgate to lock and release hydraulically through the use of positive acting, tapered rod, plunger-style locks.
4. Tailgate ajar and lock status warning light and alarm to be installed in the truck cab.
5. Safety prop for tailgate to be included.
6. All exterior welds to be continuous.

III. PACKER HOPPER

A. FUNCTION

1. The receiving hopper shall have 3.8 cubic yards capacity minimum.
2. Hopper shall act as receiving chamber for materials dumped by the lifting mechanism.

B. CONSTRUCTION

1. Hopper floor to be constructed of $1 / 4$ ". HARDOX 450 steel plate.
2. Hopper side walls to be $1 / 4$ ". HARDOX 450 steel plate.
3. All welds in areas that may be damaged by abrasive material such as fine glass MUST be "HARD SURFACED" with appropriate composite over-weld.
C. HOPPER ACCESS
4. Hopper must have access ladder on "curb-side" of vehicle. Entry area must have O.H.S.A. compliant ladder and system kill Switch.

IV. COMPACTOR

A. FUNCTION

1. Compactor is to move the material dumped by the arm from the receiving hopper into the body chamber. Also, compactor is to
compress the loaded material to such an extent that the vehicle is loaded to its recommended capacity.

B. OPERATION

1. Compactor to be powered by one (1), 6 " bore $\times 60$ " stroke, single section, dual acting hydraulic cylinder.
2. Packer cycle shall be 20 seconds @ 1200 R.P.M.
3. When fully extended, compactor must penetrate the body by 18 " minimum. This aids compaction of the material and reduces fallback into the loading hopper.
4. Compactor shall displace 1.9 cubic yards/cycle minimum.
5. Compactor shall have "on-demand" style controls with both "AUTOMATIC PACK" and "MANUAL PACK" selector console mounted in the truck cab and convenient from both sides of cab.
6. Compactor stroke shall be automatically reversible through the use of high quality automotive grade switches sensitive to both position and pressure.
7. Unit to be equipped with a "near-loaded" warning alarm to alert operator that body is approaching its maximum capacity.

C. CONSTRUCTION

1. Compactor to be guided by a floor mounted "T" track beam.
2. Both the "T" track beam and compactor guide shoes must be made of HARDOX 450 steel plate.
3. The compactor shall be constructed of engineered steel sections and fully tested using state-of-the-art Finite Stress Analysis technology.

V. AUTOMATED LOADING ARM
 A. FUNCTION

1. Loading arm shall be sleeve mounted on the curbside of the loading hopper. Arm horizontal and vertical supports shall be centered in relation to the hopper and the load to be lifted. No part of the loading arm shall be mounted underneath the chassis frame, inside the hopper, or in front of the body. Due to operational stresses under load and over time, NO OFF-SET OR
CANTILEVER DESIGNS ARE ACCEPTABLE.
2. Arm must have the ability to pick up containers, dump and return without the need to extend.
3. Once can is engaged, lift MUST move vertically for the first 35 " before tipping. This allows cans that may be placed above grade on snow banks or retaining walls to be safely serviced. This vertical movement must be controllable by the operator as needed from the in-cab control position.
4. Arm must have horizontal extension of 60 " (84 " reach to can center line without tilting or any vertical motion).
5. The container "lift" motion must be operated by one (1) 2" bore x 35 " stroke hydraulic cylinder.
6. The container tilt/dump must be operated by one 3 " bore $\times 123 / 8$ " stroke hydraulic cylinder with $11 / 2$ " cushion in rod end.
7. Lift cycle time shall be approximately seven (7) seconds (ground to ground) at engine idle.
8. Lifted container shall not "arc" outboard more than 20 " during ground to ground movement.
9. Lift must stow within legal width with lift in down/grab open position.
10. Container dump cycle shall not exceed thirteen (13) feet from the ground at its highest point. (May vary slightly with different chassis.)
11. Container dump angle when in full "up" position shall be 50 degrees minimum.
12. Lift vertical motion shall be track guided by replaceable, nongrease, NYLATRON NSM wear shoes
13. Lift cycle shall be smooth, non-binding and non-violent.
14. Lift load capacity shall be $1,000 \mathrm{lbs}$. at full extension.
15. Lift horizontal movement shall be track guided by NYLATRON NSM non-grease wear guides. Guides must be replaceable without track or lift dis-assembly.
16. Grabbers shall be belt-type capable of handling containers ranging in size from 48 gallon to 100 gallon interchangeably. Grab pressure must be adjustable to suit different types of container manufacturing methods and materials.

B. CONSTRUCTION

1. Loading lifting arms must be constructed of solid high tensile steel plate. Due to their tendency to deflect under load, tubular load lifting components are NOT acceptable.
2. All tilt mechanism connecting pins shall be 1.25 " minimum diameter with self-aligning bearings ..
3. Lift shall have a top rotator shaft that lifts grab mechanism through its motion while powered by a single hydraulic cylinder.
4. Top shaft shall be retained by replaceable NYLATRON NSM nongrease split bearings (two sets) and grade 8 bolts.
5. Lift arm rotator cam must have NYLATRON NSM non-grease bearing rotating on a 3 " diameter shaft.
6. Cylinder pivots for grab, in-out as well as up/down shall be Teflon backed self-aligning greaseless bearings properly installed with 1 " grade 8 bolts.
7. Grab pivots must use chromed steel pins with fiber filled greaseless bearings.
8. Grab cylinders (2) shall be 2 " bore $\times 6$ " stroke.
9. In-out cylinders shall be (1) 2 " bore $\times 60$ " stroke with rubberized bumper on base end.
10. Up-down cylinder shall be 2 " bore $\times 35$ " stroke.
11. Tilt cylinder must be 3 " bore $\times 123 / 8$ " stroke

C. CONTROLS

1. Outside controls for loading mechanism shall be located in the chassis cab and convenient for operator access from the ground.
2. In-cab control to be a joystick or rocker- style switches mounted in cab. Joystick or rocker switches shall control in/out, up/down/dump and grab functions.
3. Lift functions must operate without the need for computers, PLC's, proximity switches, or relays.

VI. BODY UNLOADING

A. FUNCTION

1. Body payload to be offloaded by hydraulically powered GRAVITY DUMP...
2. Hoist cylinder shall have 140 " stroke with 3 stages.. .Dump angle to be 45 degrees minimum.
3 Controls to be mounted convenient to operator's in-cab driving location.
3. Body must be equipped with safety prop for service access.
VII. HYDRAULICS
A. PUMP

All body and lift functions shall be powered by a tandem-section gear type pump (36 G.P.M. @ 800 R.P.M.). This pump shall be powered by a transmission mounted Chelsea Model 890 power take- off. Each pump section shall automatically unload to tank when factory flow settings are exceeded. This feature prevents unintended or accidental over-speed of the system.

B. BODY CONTROL VALVES

1. The body main valve must be a Parker hydraulics model VA-20 with main system pressure set @ 2,500 P.S.I. This valve must have two (2) control sections to act as directional control for the packer and to control the body hoist.. This valve must be electric/air/hydraulic controlled by automotive style relays. NO COMPUTERS OR PLC'S.
2. The valve assembly that controls all other lift and body functions shall be Parker hydraulics model VA-20 with relief set @ 2,500 P.S.I. Valve spool controls must be pneumatic. Lift functions must operate with no computers, PLC's, limit switches, or proximity switches.

C. HYDRAULIC RESERVOIR

The body shall be equipped with a "street-side" frame mounted hydraulic reservoir with a minimum capacity of sixty (60) gallons. This reservoir shall be equipped with a fill cap, breather, fluid level indicator and temperature gauge. Under normal operating conditions, hydraulic oil temperature MUST NOT EXCEED 75 degrees above ambient temperature without the need for external cooling. NO AUXILIARY COOLING ALLOWED. NO EXCEPTIONS.

D. FILTRATION AND SERVICE

System cleanliness and protection against contamination shall be accomplished through the use of the following devices:

1. All oil shall be routed through a 10 micron return line filter. This filter shall be installed at or near the front of the hydraulic reservoir and properly sized so that 100% of the flow is filtered under normal operating conditions without bypass. Filter must be located so that all periodic service can be performed from ground level. Filter service must be possible without loss of fluid.
2. IN-LINE SHUTOFF.

For ease of service the suction line shall be equipped with a shutoff valve plumbed adjacent to the reservoir.
3. SUCTION STRAINER.

A 100-mesh oil strainer must be installed in the hydraulic system suction line. This strainer must be serviceable without draining the system reservoir.
E. PLUMBING

All body and lift plumbing not requiring flexibility to complete its function must be constructed of seamless steel hydraulic tubing correctly sized for each operation. Plumbing requiring hoses shall be routed in such a way as to prevent rubbing, chafing and undue bending.

VIII. IN-CAB CONTROLS

The following controls must be mounted inside the truck cab for safe and convenient operation.

1. Hydraulic system on/off switch.
2. Body tailgate control.
3. Body dump control.
4. Work light and strobe light switches.
5.Lift joystick/ Rocker Switches
6.Packer over-ride switch

IX. LIGHTS

1. Standard lights shall be supplied in accordance with FMVSS\#108.
2. All body lights must be TRUCKLITE Model "SUPER 44" L.E.D. with SERIES 50 wiring harness.
3. Automated lift working area must have implement style adjustable work lights.
X. ACCESSORIES
4. Federal under-ride bumper shall be installed.
5. Tailgate safety prop shall be provided.
6. Tailgate "ajar" and tailgate "unlock" alarm shall be provided.
7. Back up alarm shall be provided.
8. Hopper shall have access doors on each side for cleaning behind the packer.. Doors must be sealed when closed.
6..Unit shall be equipped with a TRIPLE CAMERA SYSTEM located to customer specifications. . .

XI. PAINTING PROCEDURES

1. The body and lift shall be free of all weld slag, dirt and grease and be prepared prior to painting in accordance with the paint manufacturers specifications.
2. Body and loading mechanism shall receive at least one coat of primer and one finish coat of polyurethane enamel. Primer shall be approved for use with the finish coat material.
XII. WARRANTY
3. A minimum one-year warranty against manufacturing defects shall be provided by the manufacturer.
4. BODY MANUFACTURER MUST BE EQUIPPED TO PROVIDE ONSITE SERVICE IF NEEDED.
5. SUFFICIENT ON-SITE TRAINING FOR BOTH OPERATORS AND MECHANICS SHALL BE CONDUCTED WHEN COMPLETED UNIT IS DELIVERED.
XIII. BODY MUST BE MANUFACTURED IN THE U.S.A.
